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Abstract— For some positive constant ε0, we give a
( 3

2 − ε0)-approximation algorithm for the following problem:
given a graph G0 = (V,E0), find the shortest tour that visits
every vertex at least once. This is a special case of the metric
traveling salesman problem when the underlying metric is
defined by shortest path distances in G0. The result improves
on the 3

2 -approximation algorithm due to Christofides [13] for
this special case.
Similar to Christofides, our algorithm finds a spanning tree

whose cost is upper bounded by the optimum, then it finds
the minimum cost Eulerian augmentation (or T-join) of that
tree. The main difference is in the selection of the spanning
tree. Except in certain cases where the solution of LP is nearly
integral, we select the spanning tree randomly by sampling
from a maximum entropy distribution defined by the linear
programming relaxation.
Despite the simplicity of the algorithm, the analysis builds

on a variety of ideas such as properties of strongly Rayleigh
measures from probability theory, graph theoretical results on
the structure of near minimum cuts, and the integrality of the
T-join polytope from polyhedral theory. Also, as a byproduct
of our result, we show new properties of the near minimum
cuts of any graph, which may be of independent interest.

Keywords-Traveling Salesman Problem; Approximation
Algorithms; Randomized Rounding; Random Spanning
Trees.

1. Introduction

The Traveling Salesman Problem (TSP) is a central
and perhaps the most well-known problem in combina-
torial optimization. TSP has been a source of inspiration
and intrigue. In the words of Schrijver [33, Chapter 58],
“it belongs to the most seductive problems in combi-
natorial optimization, thanks to a blend of complexity,
applicability, and appeal to imagination”.

In an instance of the TSP, we are given a set of vertices
with their pairwise distances and the goal is to find the
shortest Hamiltonian cycle which visits every vertex. It is
typically assumed that the distance function is a metric.
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The best known approximation algorithm for TSP
has an approximation factor of 3

2 and is due
to Christofides [13]. Polynomial-time approximation
schemes (PTAS) have been found for Euclidean [3],
planar [22], [4], [24], or low-genus metrics [15], [14]. On
the other hand, the problem is known to be MAX SNP-
hard [30] when the distances are one or two (a.k.a (1, 2)-
TSP). It is also proved that there is no polynomial-time
algorithm with an approximation factor better than 220

219
for this problem, unless P = NP [29].

The focus of this paper is on traveling salesman
problem on graph metrics. These are metrics defined by
shortest path distances in an arbitrary undirected graph.
In other words, we develop an approximation algorithm
for the following problem: Given a graph G0 = (V,E0),
find the shortest tour that visits every vertex at least
once.

Theorem 1.1. The approximation ratio of Algorithm 2
on graph metrics is at most 3

2 − ε0, where ε0 > 0 is a
constant.

A corollary of our analysis is that the integrality gap
of the natural linear programming relaxation (due to
Held and Karp [23]) is also strictly below 3

2 on graph
metrics. This ratio is conjectured to be 4

3 in general. In
fact, it has been conjectured that there is a polynomial-
time algorithm for TSP with an approximation ratio of
4
3 . This conjecture has been proved in the special case
when the underlying graph G0 is cubic [20], [1], [11].

Recently, and after the first appearance of our paper,
Mömke and Svensson [26] came up with a beautiful
combinatorial algorithm for the same problem with the
approximation ratio of 1.461. Also, An and Shmoys
extended the results of this paper to Traveling Salesman
Path Problems [2].

1.1. Overview of the Algorithm and Techniques

We propose the same algorithm as in Asadpour et
al. [5] for TSP. Let x be the optimum solution of the
Held-Karp linear programming relaxation. We sample a
tree F from a maximum entropy distribution in which for



every T, P [T] ∝
∏

e∈T λe. We find non-negative λe’s in
such a way that for every edge e ∈ E and tree F sampled
from μ, P [e ∈ F] is proportional to xe. The details are
described in Section 3.

It is not hard to see that the expected cost of the
above tree is bounded by the cost of x. We conjecture
that the expected cost of the minimum cost Eulerian
augmentation of F is strictly less than half of the cost of
x for every metric.

Conjecture 1.2. The approximation ratio of Algorithm
1 on any metric is at most 3

2−ε, where ε > 0 is a constant.

In this paper, we analyze this algorithm only for
graphical metrics and after a slight modification. In our
algorithm, we handle the case where x is nearly integral
separately using a deterministic algorithm. In fact, when
x is nearly integral, it is not hard to find a rounding
scheme with an approximation ratio close to 4

3 . When
x is not nearly integral, we follow Algorithm 1. See
Algorithm 2 for the details.

The analysis of the algorithm has three major
ingredients: (i) polyhedral structure of T-join polytope
(ii) structure of near minimum cuts, and (iii) properties
of random spanning trees. In Part (i), we use the
integrality of the T-join polytope to relate the cost
of the Eulerian augmentation to the distribution of
near minimum cuts and the parity of the edges of F
across them. Part (ii) on the structure of near minimum
cuts builds on the cactus structure [16] and polygon
representation [6] of minimum and near-minimum cuts,
respectively. Finally, the last part uses techniques from
a recent and very interesting study of strongly Rayleigh
measures [9] and their properties to prove results on the
joint distribution of the parity of the number of edges
across multiple cuts.

Polyhedral structure of T-join polytope. Using
the odd-set formulation for the T-join polytope [17],
Wolsey [34] showed the cost of T-join for any set T
of even cardinality is at most half of the optimum
value of Held and Karp LP. Our starting point is to
ask when can the cost of T-join be bounded strictly
less than half of Held-Karp bound. To save the cost
accounted for an edge e, we identify a sufficient,
though not necessary, condition. The condition states
that every near minimum cut containing edge e, in
the graph with weights given by LP solution x, has an
even number of edges in the tree selected in the first step.

Structure of Near Minimum Cuts. Let G(V,E) be
the weighted (or fractional) graph defined by x. For some
δ, consider all (1+δ) near minimum cuts or equivalently
all cuts of size at most 2(1+δ). We show that for δ small
enough, either a constant fraction of edges appear in a

constant number of (1 + δ)-near minimum cuts, or x is
nearly integral.

In order to build some intuition about the above
statement, consider the following extreme case: If x is
integral, that is if G is a cycle, then every edge belongs
to n−1 minimum cuts where n is the number of vertices.
We prove an approximate converse of this statement: for
some large constant τ, if almost all the edges are in more
than τ near minimum cuts, then the graph is close to a
Hamiltonian cycle, in the sense that almost all of its
edges are nearly integral.

The above theorem is proved by a characterization
of the structure of near minimum cuts for any graph
and it could be of independent interest. For stating this
characterization, we need to define a few things. Let C be
a collection of cuts in graph G. Define a cross graph G on
vertex set C where an edge between two vertices denotes
that their corresponding cuts cross. Every connected
component of G partitions the vertices of G into a set
of “atoms”. We show that if C is a collection of near
minimum cuts, the graph resulting from contracting the
atoms of any connected component is very close to a
cycle. In particular, the weight of nearly all the edges in
the resulting graph is very close to half of the size of a
minimum cut of G.

Stated in the above form, our result is a generalization
of Dinits et al. [16] from minimum cuts to near-minimum
cuts. The main technical tool behind the proof is the
structure called polygon representation of near-minimum
cuts as defined by Benczúr [6], [7] and Benczúr and
Goemans [8].

Random Spanning Trees and Strongly Rayleigh
Measures. In the analysis of this algorithm for asym-
metric TSP [5], Asadpour et al. use the negative corre-
lation between the edges of random spanning trees to
obtain concentration results on the distribution of edges
across a cut. For this work, we have to use stronger
virtues of negative dependence [31]. In particular, we use
the fact that the distribution of spanning trees belongs
to a more general class of measures called Strongly
Rayleigh [9]. These measures maintain negative asso-
ciation and log concavity of the rank sequence similar
to random spanning trees. In addition, they are closed
under projection and truncation and conditioning in
certain scenarios.

Let C be the set of near minimum cuts of G. We
prove that for a constant fraction of edges e ∈ G, with
constant probability, all of the cuts in C that contain e
have an even intersection with F. Note that the expected
number of edges of F across any cut in C is very close
to 2 and it follows simply that a particular cut in C
contains two edges of F with constant probability. Our
proof shows the stronger property that with constant



probability, the number of edges of F across all cuts in
C containing e is even. While our proof starts with a
λ-uniform spanning tree measure, in intermediate steps
we obtain more general measures by conditioning and
truncation on certain events. These new measures are
no longer λ-uniform spanning tree measures but are still
strongly Rayleigh due to closure properties of strongly
Rayleigh measures and thus still retain properties like
negative association and log concavity. It is instructive
to look at the case where this set contains only two
degree cuts corresponding to the endpoints of an edge
e = {u, v}. Even in this special case, we are not aware
of a direct combinatorial argument to prove that with
constant probability, both u and v have an even degree
in F.

2. Notation and the LP Relaxation

We will use the following linear programming re-
laxation called LPsubtour, known as subtour elimination
or Held-Karp linear program. Let c({u, v}) denote the
distance between u and v or the cost of choosing edge
{u, v} for each u, v ∈ V(G0).

(LPsubtour) minimize
∑

u,v∈V
c({u, v})x{u,v}

subject to
∑

u∈S,v∈S x{u,v} ≥ 2 ∀S � V,∑
u∈V x{u,v} = 2 ∀ v ∈ V,

x{u,v} ≥ 0 ∀u, v ∈ V.

With a slight abuse of notation, let x be an optimal
solution of this LP. Define G = (V,E, x) to be the
fractional support graph corresponding to the optimal
vector x, i.e., E = {e : xe > 0}.

Throughout the paper, we will refer to xe as the
fraction of edge e in G and to G as a fractional or
weighted graph. In this sense, the degree of a node in
G is the sum of the fractions of edges incident to that
node. Therefore, G is fractionally 2-regular and 2-edge
connected.

The following notations will be adopted. For a set E′ ⊆
E, and any function f defined on the edges of G, let

f (E′) =
∑
e∈E′

f (e).

For example, c(E′) =
∑

e∈E′ c(e). Similarly, let x(E′) =∑
e∈E′ xe, and c(x(E′)) =

∑
e∈E′ c(e)xe. In particular, we use

c(x) := c(x(E)).
For a set S ⊆ V, let E(S) = {{u, v} : u, v ∈ S} be the

set of edges inside S. For two non-crossing sets S,S′ ⊂ V,
let E(S,S′) = {{u, v} : u ∈ S, v ∈ S′} be the set of edges
between the vertices in S and S′. In particular, if S ⊂ S′,
we use E(S,S′) := {{u, v} : u ∈ S, v ∈ S′ \ S}. Also let
S = V \ S, and d(S) = E(S,S) for any F ⊆ E.

3. The Algorithm

Our algorithm is quite similar to Christofides algo-
rithm: first it finds a spanning tree whose cost is upper
bounded by the optimum, then it finds the minimum
cost Eulerian augmentation of that tree.

The main difference is in the selection of the spanning
tree. Here, our idea is similar to Asadpour et al. [5]. The
algorithm selects a spanning tree randomly from G, the
support graph of the solution of LPsubtour. The tree is
sampled from a distribution μ defined over T , the set of
spanning trees of G. This distribution is called λ-uniform
or maximum entropy because for every T ∈ T ,

P [T] ∝
∏
e∈T

λe.

The algorithm finds non-negative λe’s in a such a way
that for every edge e ∈ E and tree F sampled from μ,
P [e ∈ F] is (approximately) equal to (1 − 1

n )xe. We refer
the reader to [5] for more details.

After selecting the spanning tree, the algorithm finds
the minimum cost Eulerian augmentation or T-join on
the odd-degree vertices of F and constructs a Hamilto-
nian cycle by short cutting. The details are described in
Algorithm 1.

Algorithm 1 Algorithm for TSP for general metrics

Input: A set V of vertices and a cost function c : V ×
V → R+ satisfying the triangle inequality.

Output: A hamiltonian tour on V.
1: Solve the LPsubtour to get an optimum solution x. Let

G = (V,E, x) be the support graph of x.
2: Define z := (1−1/n)x. Let μ denote the maximum en-

tropy distribution over spanning trees of G such that
for a spanning tree F sampled from μ, P [e ∈ F] = ze

for each edge e ∈ E.
3: Sample a spanning tree F from μ.
4: Let T denote the set of odd-degree nodes in F.

Compute the cheapest T-join J.
5: return the tour J ∪ F.

In Conjecture 1.2, we conjecture that the expected
cost of the tour returned by Algorithm 1 is strictly less
than 3

2 of the cost of OPT for general metrics. However,
we can analyze this algorithm only for graphical metrics
and after a slight modification. In a special case, where
a large fraction of edges in x are nearly integral, we
choose the tree deterministically. More specifically, we
say an edge e ∈ E is nearly integral if xe ≥ 1 − γ, where
γ > 0 is a constant. Also x is a nearly integral solution
of LPsubtour if it has many nearly integral edges, i.e.,
|{e : xe ≥ 1−γ}| ≥ (1−ε2)n for certain constants γ, ε2 > 0.
If x is a nearly integral solution of LPsubtour, we find
the minimum cost spanning tree that contains as many



nearly integral edges as possible. In other words, we
find F′ the minimum cost spanning subgraph of G0 that
contains all of the nearly integral edges and define F
to be the minimum cost spanning tree of F′. Then we
simply add minimum T-join on odd-degree vertices of
F. The details of our final algorithm are described in
Algorithm 2.

Algorithm 2 Improved approximation algorithm for
graphic TSP

Input: A set V of vertices and a cost function c : V ×
V → R+ satisfying the triangle inequality.

Output: A hamiltonian tour on V.
1: Let ε2 = 2 · 106

√
δ, γ = 4

√
δ, δ = 6.25 · 10−16.

2: Solve the LPsubtour to get an optimum solution x. Let
G = (V,E, x) be the support graph of x.

3: if x contains (1− ε2)n edges of fraction greater than
1 − γ then

4: Find a minimum cost spanning subgraph F′ in G0
that contains all the edges of fraction greater than
1−γ, and let F be the minimum cost spanning tree
in F′.

5: Let T denote the set of odd-degree nodes in F.
Compute the cheapest T-join J.

6: return the tour J ∪ F.
7: else
8: return output of Algorithm 1.
9: end if

3.1. Overview of the Analysis

In the analysis, we handle the cases considered in
Algorithm 1 and Algorithm 2 differently. If x is nearly
integral, then a simple polyhedral argument bounds the
cost of the tree F and the T-join J (see Lemma 3.3).
Indeed the approximation factor is close to 4

3 in this case.
The more interesting case is when x is not nearly

integral, and F is sampled from the distribution μ in
Step 3 of Algorithm 1. In that case, first observe that the
expected cost of F is at most c(x) since the probability
of choosing each edge e is at most xe. The main part of
the argument is to show that the expected cost of the
T-join J is smaller than (1 − ε0) c(x)

2 .

(LPT− join) minimize
∑
e∈E

c(e)ye

subject to
∑

e∈E(S,S) ye ≥ 1 ∀S ⊆ V, |S ∩ T| odd,
ye ≥ 0 ∀ e ∈ E.

In order to bound the cost of the T-join, first observe
that half of any solution of LPsubtour, the vector x

2 , is a
feasible fractional solution to the LPT− join for any set
T ⊆ V. This is because across any cut, the sum of

the fractions of x
2 is at least 1. This observation, made

originally by Wolsey [34], also implies that the solution
of Christofides is at most 3

2 c(x).
In order to get a factor better than 3

2 , it is sufficient
to construct a feasible solution of smaller cost for the
T-join polytope, when T is the set of odd degree vertices
of the sampled spanning tree F. When T in LPT− join is set
to the odd-degree vertices of F, the constraints present
are exactly for the cuts which intersect in odd number
of edges with F.

A cut is a (1 + δ) near minimum cut of G if the total
fraction of the edges in the cut is at most (1 + δ) times
the minimum cut of G. In other words, cuts (S,S) for
which x(E(S,S)) ≤ 2(1+δ) are called near minimum cuts.
Also, a cut (S,S) is odd with respect to F iff F∩E(S,S) is
odd, i.e., F contains an odd number of edges of the cut
(S,S). The following two definitions are crucial.

We say an edge e is even with respect to F if any near
minimum cut that includes e is even with respect to F,
i.e., for all (S, S) such that e ∈ E(S,S) and x(E(S,S)) ≤
2(1+ δ), |F∩E(S,S)| is even. Given a tree F, setting ye =

xe
2(1+δ) for each edge e which is even with respect to F
and ye =

xe
2 for every other edge e, we obtain a feasible

solution to the LPT− join when T is the set of odd-degree
vertices of F. Thus it is enough to find a tree F for which
the set of even edges is large.

Let E(e) be the event that e is even with respect to
F where F is sampled from the distribution μ. We say
e is good if the probability of this event is bounded
from zero by some constant. More precisely, if for a fixed
constant ρ > 0,

P[∃(S,S) : e ∈ E(S,S) and x(E(S, S)) ≤ 2(1 + δ)

and |F ∩ E(S, S)| is odd] ≤ 1 − ρ.
Our strategy is to identify a large number of good

edges in the graph. We will use these edges to show that
the cost of T-join is strictly less than

c(x)
2 . The following

Theorem shows that it is indeed possible to find such
edges if the algorithm samples the tree F in Step 3.

Theorem 3.1 (Structure Theorem). Let x be an
optimal solution of LPsubtour, and let μ be the λ-uniform
measure defined based on x. There exist sufficiently small
constants ε1, ρ bounded away from zero such that at least
one of the following is satisfied by x:

1) there is an abundance of good edges in x:
There exists a set E∗ ⊂ E such that x(E∗) ≥ ε1n,
and

∀e ∈ E∗ : P [E(e)] ≥ ρ.
2) x is nearly integral: x contains at least (1 − ε2)n

edges of fraction greater than 1 − γ.
We note that the Structure Theorem is valid for all

feasible solutions to the Held-Karp relaxation and not



just for vertex solutions of the linear program which have
been studied extensively [12], [10], [21].

3.2. Proof of Theorem 1.1

In the rest of the section, we show Theorem 3.1
implies Theorem 1.1 by constructing feasible solutions
to LPT− join of small cost.

Case 1: x has at least ε1n good edges. First observe
that the expected cost of F is at most c(x). This is
because P [e ∈ F] = ze ≤ xe so we have E [c(F)] =∑

e∈E∗ c(e)P [e ∈ F] ≤ c(x). Hence, we only need to bound
the cost of the T-join.

Lemma 3.2. Let x be a fractional solution of (LPsubtour),
E∗ ⊂ E be the set of good edges. If there are a lot of good
edges, that is if x(E∗) ≥ ε1n, then the expected cost of the

smallest Eulerian tour is at most 3/2 − ε1δρ
4(1+δ) .

Proof. We provide a fractional solution to the (LPT− join)
to make it Eulerian. For any edge e ∈ E if e is contained
in at least one odd (1 + δ) near minimum cut (S,S), set
ye = xe/2, otherwise set ye = xe/2(1 + δ)). Observe that

a cut (S,S) is odd in F iff |S ∩ T| is odd. Therefore, y is
indeed a fractional solution of (LPT− join). Now, to bound
the cost of y in Step 3 note:

E
[
c(y)

] ≤ c(x)
2

−
∑
e∈E

xec(e)P [e is even]
(

1
2
− 1

2(1 + δ)

)

≤ c(x)
2

− δ

2(1 + δ)

∑
e∈E∗

xeρ ≤ c(x)(
1
2
−
ε1δρ

4(1 + δ)
).

The second inequality holds because c(e) ≥ 1 for all e ∈ E,
and the last one because c(x) ≤ 2n. Since the T-join
polytope is integral [17], the minimum cost integral T-
join costs at most c(y). By adding the edges of minimum
T-join J to F we obtain an Eulerian tour of expected total

weight at most c(x)( 3
2 −

ε1δρ
4(1+δ) ). �

The above argument bounds the cost of the tour
in expectation. By sampling a tree log n times and
choosing the best solution, one can obtain an Eulerian
tour of the desired cost with high probability.

Case 2: x is nearly integral. In this case, we bound
the cost of the tree F and T-join J together and prove the
following lemma. The construction of the fractional T-
join in the lemma is similar to a construction by Monma,
Munson and Pulleyblank [27].

Lemma 3.3. Let x be a fractional solution of (LPsubtour).
If x contains at least (1 − ε2)n edges of fraction greater
than 1 − γ, then the tour computed in Algorithm 2, step
5 is at most c(x)( 4

3 + 2ε2 + 4γ).

Proof. Let I′ = {e | xe > 1 − γ} be the set of nearly
integral edges, and let F′ be the minimum cost spanning

graph that contains I′. Since G0 is connected, I′ can be
augmented into a connected graph using only edges of
cost 1. Hence, we have c(F′) = c(I′)+ |F′ \ I′| ≤

∑
e∈I′ c(e)xe

1−γ +
|F′ \ I′|.

Recall that F is a minimum cost spanning subgraph of
F′. Because of the constraints of LP and since γ < 1/3, it
is easy to see that I′ consists of disjoint cycles and paths
and the length of each cycle is at least 1

γ . Therefore, F
will have at least n(1−ε2)(1−γ) edges from I′. Therefore,
|F \ I′| ≤ n(ε2 + γ). Let us set I = I′ ∩ F.

Let T denote the set of odd vertices in F. Again, we
bound the cost of T-join by constructing a fractional
solution to the LPT− join, and then invoking the integrality
of the T-join polytope.

Let ye =
xe

3(1−γ) for e ∈ I, ye = 1 for e ∈ F \ I, and
ye = xe otherwise. We first show that y is feasible for

LPT− join. Let (U,U) be any cut which has an odd number
of vertices of T in U (equivalently, a cut that has an odd
number of edges of F). If there exists an e ∈ (F \ S) ∩
E(U,U), then y(d(U)) ≥ ye ≥ 1 and the constraint is

satisfied. Otherwise, we have E(U,U) ∩ F ⊆ S. Therefore
since (U,U) has an odd number of edges F, and I ⊂ F,
(U,U) must contain an odd number of edges of I. By the
values assigned to the edges in y, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

y(d(U)) ≥ x(d(U) \ I) ≥ 1 if |I ∩ E(U,U)| = 1

y(d(U)) ≥ y(d(U) ∩ I) ≥= 1 if |I ∩ E(U,U)| ≥ 3

thus y is a feasible solution of (LPT− join).
Now we bound the cost of the final Eulerian subgraph

which will be at most c(F) + c(y)

c(F) + c(y) ≤ c(x(I))
1 − γ + 2c(F \ I) + c(x(E \ F)) +

c(x(I))
3(1 − γ)

≤ 4c(x(I))
3(1 − γ)

+ n(2ε2 + 2γ) + c(x(E \ I))

≤ c(x)(
4
3
+ 2ε2 + 4γ).

The last inequality follows from the fact that c(x) ≥ n,
and the last inequality follows from γ < 1/3. �

4. Proof of the Structure Theorem
(Main Ideas)

The rest of the paper is dedicated to proving the
Structure Theorem. For proving this theorem, we have
to establish several results about the structure of near
minimum cuts in graphs as well as properties of random
spanning trees. Because of the space constraint we do
not include most of the proofs. We will explain the main
ideas instead.

Subsections 4.1 and 4.2 focus on the structure of near
minimum cuts. The following two definitions are quite
important.



Definition 4.1 (Atom). For a collection C of cuts of
a graph H = (V,E), atoms of C are the members of a
partition P of the vertex set V such that

• no cut of C divides any of the atoms of C, and
• P is the coarsest partition with this property.

We say an atom is singleton if it is a set of a single
vertex of V.

Definition 4.2 (Cross Graph). A pair of cuts (A,A) and
(B,B) is said to cross if A ∩ B,A \ B,B \ A,V \ (A ∪ B)
are all non-empty. For a collection C of cuts of a graph
H = (V,E), the cross graph is a graph on vertex set C
and that has an edge between two cuts in C if they cross.
Each connected component of the cross graph is called a
cut class.

Subsection 4.1, reduces the proof of Theorem 3.1 to
the following: either x is nearly integral, or a constant
fraction of edges of x are contained in a constant number
of near minimum cuts. More precisely, if the number
of atoms in large cut classes defined by (1 + δ) near
minimum cuts of G is close to n, then case 2 of Theorem
3.1 holds. Otherwise, a constant fraction of edges of G
are not contained in any large cut class. This is stated in
Lemmas 4.4 and 4.6. The proof of these lemmas build on
a characterization of near minimum cuts of G presented
in subsection 4.2. We note that this characterization,
presented in Theorem 4.9, applies to any graph and
could be of independent interest.

Finally, in subsection 4.3, we identify E∗ from the
edges that are contained only in constant number of near
minimum cuts.

4.1. Large Cut Classes and the Near Integrality of x

Consider the cross graph corresponding to (1+δ)-near
minimum cuts of G and let C1,C2, · · ·Cl be its cut classes.
Denote the set of atoms of any of these families of cuts
by φ(Ci) for 1 ≤ i ≤ l.

Definition 4.3. Let τ = 1
20
√
δ
= 2 · 106. We say a cut

class Ci is large if |φ(Ci)| ≥ τ, and small otherwise.

Let L(τ) be the set of all atoms of the large cut classes,
i.e.

L(τ) =
⋃

Ci:|φ(Ci)|≥τ
φ(Ci).

The size of L(τ) plays an important role. It is easy to
see that |L(τ)| ≤ n(1 + 2

τ−2 ). Now, if |L(τ)| is close to its
maximum possible value, i.e. |L(τ)| ≥ (1− ε)n , then case
2 of Theorem 3.1 holds.

Lemma 4.4. For any ε ≥ 1
τ−2 , and δ <

1
100 , if |L(τ)| ≥

(1− ε)n then G contains at least (1− 20
√
δ− 17ε)n edges

of fraction greater than 1 − 4
√
δ.

In order to understand this intuitively, think about
the cross graph defined by the minimum cuts of a cycle
of length n. Observe that this graph contains

(n
2

)
(near)

minimum cuts, and the cross graph contains only one
connected component or equivalently, one large cut class
with n atoms. Therefore, if G is a cycle of length n,
|L(τ)| = n. The above Lemma is an approximate converse
of this observation: if |L(τ)| is large, then the LP solution
is in a certain way close to a Hamiltonian cycle.

On the other hand, if L(τ) is small, the first case of
Theorem 3.1 holds. We show this in two steps. The first
step shows that there exists a large fraction of edges
contained in a constant number of near minimum cuts.
A necessary condition for this property is that the edge
does not belong to any large cut classes.

Definition 4.5. An edge e is incident to an atom a, if
exactly one of its endpoints is contained in a. An edge e
is said to be contained in a cut class Ci if e is incident
to some atom of Ci.

Let ES be the set of edges that are not contained in
any of the large cut classes. In the next lemma we show
that if |L(τ)| < (1 − ε)n, then x(ES) is large:

Lemma 4.6. If |L(τ)| < (1 − ε)n then x(ES) ≥ n(ε − 3δ).

A simple double counting argument shows that a
constant fraction of edges in ES are contained in only a
small number of near minimum cuts. However, appearing
in a constant number of near minimum cuts does not
automatically guarantee that an edge is good (see Figure
1 for a counter example). We will find the set of good
edges E∗ in ES in Section 4.3.

Before that, we are ready to assign the exact values
of the constants. We set ε = 5000

τ = 2.5 · 10−3 so
as to satisfy all the conditions. This already implies
appropriate values for ε1, ε2 and γ in the algorithm. We

set ε1 = 3000δ, ε2 = 2·106
√
δ ≥ 20

√
δ+17ε and γ = 4

√
δ.

Finally, from Lemma 3.3, 2ε2 + 4γ ≤ 0.11 is enough to
give a better than 3

2 bound on the performance of the
algorithm. This implies δ = 6.25 · 10−16 suffices to satisfy
all the conditions. We note that we have not optimized
the constants.

4.2. Near Minimum Cuts and their Cactus-like Structure

In this section, we prove crucial lemmas about the
structure of near minimum cuts of any graph. Applying
these lemmas to the solution of the Held-Karp linear
program directly yields Lemma 4.4 and Lemma 4.6.

Let H be an unweighted graph and let c denote size
of the minimum cut of H. For a partitioning P =
{P1,P2, . . . ,Pk} of vertices in H, let H(P) be the graph
obtained by identifying the vertex set of each part Pi,
and removing the self-loops afterwards. For example, for



a cut class Ci, each vertex of H(φ(CI)) is corresponding
to an atom of Ci.

The following lemma about the structure of minimum
cuts follows from the cactus representation [16] (also see
Fleiner and Frank [19] for a short proof).

Lemma 4.7. [16] Let Ci denote a cut class of minimum
cuts of H. Then H(φ(Ci)) is a cycle where weight of every
edge is exactly c

2 and every pair of edges of the cycle
corresponds to a minimum cut of H.

Our main result in this section is that the above lemma
generalizes to near minimum cuts in an approximate
sense.

Definition 4.8 ((α, α′, β)-cactaceous). A graph H =
(V,E) with minimum cut c is (α, α′, β)-cactaceous if for
some δ ≥ 0:

• There exists at least m := (1 − α
√
δ)|V(H)| pairs of

vertices of H, {(v1,u1), (v2,u2), . . . , (vm,um)} such that
for each 1 ≤ i ≤ m, E(vi,ui) ≥ c

2 (1− α′
√
δ), and each

vertex v ∈ V(H) is contained in at most two such
pairs.

• The number of edges of the graph H satisfies the
following:

c
2
|V(H)| ≤ |E(H)| ≤ (1 + βδ)

c
2
|V(H)|.

Theorem 4.9. For any δ < 1/100, let Ci denote a cut
class of (1 + δ) near minimum cuts of H. Then H(φ(Ci))
is (20, 4, 3)-cactaceous.

If we let δ = 0 in the description of Theorem 4.9,
we obtain that for any cut class Ci of the collection of
minimum cuts of H, the graph H(φ(Ci)) is a cycle where
the weight of each edge is c

2 , thus we obtain Lemma 4.7.
The main technical tool behind the proof is the struc-

ture called polygon representation of near-minimum cuts
as defined by Benczúr [6], [7], and Benczúr, Goemans
[8]. Benczúr showed that for δ ≤ 1/5, the near minimum
cuts of any graph H can be represented using polygon
representation. Our theorem uses this representation
heavily. However, the emphasis of [8] (and results before
that) were on representing the vertex sets of minimum
cuts. Instead, here we focus on the edge sets and observe
several interesting properties that could be of indepen-
dent interest.

Applying the above results to the structure of near
minimum cuts of the Held-Karp linear programming
solution x leads to the proofs of Lemmas 4.6 and 4.4.
Firstly, Theorem 4.9 implies the following corollary
about the structure of any cut class of near minimum
cuts of the weighted graph G = (V,E, x).

Corollary 4.10. For any δ < 1/100, let Ci be a cut class
of the (1 + δ) near minimum cuts of the weighted graph
G = (V,E, x). Then G(φ(Ci)) satisfies the following:

• There exists at least m := (1 − 20
√
δ)|φ(Ci)| pairs

of vertices of G(φ(Ci)), {(a1, b1), (a2, b2), . . . , (am, bm)}
such that for each 1 ≤ i ≤ m, x(ai, bi) ≥ 1− 4

√
δ, and

each vertex a ∈ V(G(φ(Ci))) is contained in at most
two such pairs.

• |φ(Ci)| ≤ x(E(G(φ(Ci)))) ≤ (1 + 3δ)|φ(Ci)|.
Proof of Lemma 4.6. We will show that a constant
fraction of edges in G are not incident to any of the
atoms of L(τ). By Corollary 4.10, for any cut class Ci,
the total sum of the fraction of edges in G(φ(Ci)) is at
most |φ(Ci)|(1+βδ), where β := 3. Thus the total fraction
of edges that are contained in at least one of the large
cut classes is no more than

|L(τ)|(1 + βδ) < n(1 − ε)(1 + βδ) ≤ n − n(ε − βδ).

Therefore, since the total sum of the fraction of edges
in G is n (i.e. x ∈ LPsubtour), we have x(ES) ≥ (ε−βδ)n. �

Proof of Lemma 4.4. We will show that for any δ < 1
100 ,

if |L(τ)| ≥ (1 − ε)n, then x contains at least n(1 − α
√
δ −

5ε − 12
τ−2 ) ≥ n(1 − α

√
δ − 17ε) edges of fraction 1 − α′

√
δ,

where α := 20, α′ := 4. This is because if |L(τ)| is large,
then most of the atoms in L(τ) are singletons. Also, a
near integral edge in G(φ(Ci)) incident to two singleton
atoms corresponds to an actual near integral edge in G.

Let L be the number of large cut classes. Using the
“tree hierarchy” of minimum cuts defined by Benczúr [7]
one can simply prove the following claim (the claim is
proved in the full version of the paper [28]):

Claim 4.11. Any subset C1,C2, . . . ,Cl of the cut classes
of the cross graph of any graph H contains a set of∑l

i=1 |φ(Ci)| − 2(l − 1) mutually disjoint atoms.

Since the number of mutually disjoint subsets of a set
of n vertices is no more than n, we have |L(τ)| ≤ n + 2L.
But then we have Lτ ≤ n + 2L and therefore L ≤ n

τ−2 .
Therefore, we can find at least |L(τ)| −2L ≥ n(1−ε− 2

τ−2 )
mutually disjoint atoms in L(τ). But these atoms define a
partition of the ground set V, and at least n(1−2ε− 4

τ−2 )
of them must be singletons. Therefore, the number of
non-singleton atoms of L(τ) is at most n(2ε + 6

τ−2 ).
On the other hand, by Corollary 4.10, there are∑

Ci:|φ(Ci)|≥τ
|φ(Ci)|(1−α

√
δ) = |L(τ)|(1−α

√
δ) ≥ n(1−ε−α

√
δ)

edges of fraction 1−α′
√
δ in graphs G(φ(Ci)) for any large

cut class Ci. Hence, at least n(1−α
√
δ−5ε− 12

τ−2 ) of these
edges are incident only to singletons. But edges adjacent
to two singletons are corresponding to actual edges of G.
We conclude that there are n(1 − α

√
δ − 5ε − 12

τ−2 ) edges

of fraction 1− α′
√
δ in G. Then lemma follows from the

assumption ε > 1
τ−2 . �
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Figure 1. The left diagram represents the λ values of the edges, while the right diagram represents the approximate probability of each
edge. The example shows that although P [(u, v) ∈ T] � 1

2 , and the expected degree of u and v is 2, P
[
degT(u) + degT(v) = 3

]
= 1 − o(1).

Therefore (u, v) is not good. Note that this is not exactly a solution to LPsubtour, but still points to difficulties in proving a trivial edge is
good.

4.3. Good Edges and Random Spanning Trees

In this section, we prove that at least a constant
fraction of the edges in ES (as defined in Lemma 4.6)
are good.

Theorem 4.12. If |L(τ)| ≤ (1− ε)n (i.e., x is not nearly
integral), then there exists a set E∗ ⊆ ES of good edges
such that x(E∗) ≥ ε1n.

We identify three types of good edges, namely, “trivial
edges”, “inside edges”, and “thread edges”. Here, we
only define trivial edges and inside edges. Then we prove
that certain trivial edges are good. We refer the reader
to the full version of this paper [28] for the complete
proof.

Definition 4.13 (Trivial Edge). We call an edge trivial
if it is contained in only two near minimum cuts, which
are the degree constraint of its endpoints.

Definition 4.14 (Inside Edge). An edge e = (u, v) is an
inside edge if it is contained in a small cut class Ci such
that the atoms of Ci containing u and v are singletons.

Our main tools for proving that an edge e ∈ ES

is good are properties of strongly Rayleigh measures.
Strongly Rayleigh measures satisfy “the strongest form”
of negative dependence [31] and are studied in great
details in Borcea et al. [9]. These measures include
uniform and λ-uniform random spanning tree measures
as a special case.

Let us define these measures and describe some of the
main properties that will be used in our proof. For an
element (edge) e ∈ E, let Xe be the indicator random
variable of e, and for S ⊆ E, let XS =

∑
e∈S Xe. For any

measure μ on 2E, we may form its generating polynomial,
f (t) =

∑
S⊆E μ(S)tS, where tS =

∏
e∈S te. A polynomial

f ∈ C[te]e∈E is called stable if f (te : e ∈ E) � 0 whenever
Im(te) > 0 for all e ∈ E. A stable polynomial with

all real coefficients is called real stable. For example, a
polynomial in one variable is real stable iff all its roots
are real. A measure μ on 2E is called strongly Rayleigh
if its generating polynomial is real stable.

Strongly Rayleigh measures are closed under Projec-
tion, Conditioning, and Truncation, and they satisfy
Negative Association, Ultra Log Concavity of the rank
sequence, and Stochastic Domination Property on trun-
cated measures.

• Truncation: Let μ be a probability measure on
2E, and 1 ≤ k ≤ |E|. The truncation of μ to k is the
conditional measure μk :=

(
μ | XE = k

)
. Borcea et

al. [9] showed that Strongly Rayleigh measures are
closed under truncation.

• Negative Association: A measure μ on 2E is
called negatively associated or NA if

Eμ
[

f
]
Eμ

[
g
]
=

∫
f dμ

∫
gdμ ≥

∫
f gdμ = Eμ

[
f g

]

for any increasing functions f , g on 2E that depend
on disjoint sets of elements.
Feder and Mihail [18] proved that uniform measures
on balanced matroids (and in particular on spanning
trees) satisfy negative association. Borcea et al.
[9] proved that the strongly Rayleigh measure also
satisfy the negative association property.

• Log Concavity: A real sequence {ak}mk=0 is LC if
a2

k ≥ ak−1ak+1, 1 ≤ k ≤ m − 1, and the indices of
its non-zero terms form an interval (of non-negative
integers).
Borcea et al. [9] showed that the rank sequence of a
strongly Rayleigh measure is the probability distri-
bution of the number of successes in m independent
trials for some sequence of success probabilities



p1, . . . , pm. Therefore, it satisfies the LC property
[32].

• Stochastic Domination: Let μ, ν be two measures
defined on 2E. We say μ stochastically dominates ν
(ν � μ) if for any increasing event A on 2E, we have
μ(A) ≥ ν(A).
Borcea et al. [9] showed that a truncation of strongly
Rayleigh measures is stochastically dominated by a
truncation of a larger value, i.e., for all 1 ≤ k < m,
μk � μk+1.

In the rest of the paper, we use the properties of
strongly Rayleigh measures to prove that certain types
of trivial edges are good. Trivial edges are the simplest
possible candidate edges for being good. In fact, in the
extended version of this paper [28], we show that any
trivial edge e such that xe < 1

2 − 1
8000 or xe > 1

2 +
1

8000 is
good. Furthermore, of any adjacent pair of trivial edges,
one of them is good. The reader can see Figure 1 for
an example of a trivial edge which is not good. In the
following lemma, we prove this claim when xe is very
small to illustrate the techniques used.

Lemma 4.15. Let μ be a λ-uniform measure of spanning
trees of G = (V,E, x). There exists a small but fixed ε > 0
such that for any trivial edge e = (u, v), if xe ≤ ε then e is
even with a constant probability (i.e., u and v have even
degree with a constant probability).

Proof. Since xe ≤ ε and ε is very small, it is sufficient to
condition on the spanning trees that does not contain
e, and show that u and v have an even degree with
a constant probability in the conditional distribution.
We let ν = {μ : Xe = 0} where Xe is the indicator
random variable of edge e. Observe that ν is a strongly
Rayleigh measure since μ is strongly Rayleigh. Actually,
it is not difficult to see that ν is also a uniform spanning
tree measure. By the negative association property of
the uniform spanning tree measure, this conditioning
does not change the expected degree of e’s endpoints
by more than ε. Therefore, we have that 2 − ε ≤
Eν

[|T ∩ deg(u)|] ,Eν [|T ∩ deg(v)|] ≤ 2.
Let Y := |T ∩ d(u)|, Z := |T ∩ d(v)|. Since edges

are negatively correlated under λ-uniform measures of
spanning trees [25], the degree of both u and v are highly
concentrated around their expected value. It follows
that Pν [Y = 2] and Pν [Z = 2] are constants. Since these
constants may be strictly below 1/2, we may not simply
apply a union bound to prove the lemma. Instead, we
show that Pν [Z = 2 | Y = 2] is a constant. Note that
the measure {ν | Y = 2} is not necessarily a λ-uniform
spanning tree measure, but it is still a strongly Rayleigh
measure since it is a truncation of a strongly Rayleigh
measure. We use concentration properties of this mea-
sure to prove the lemma.

Let E′ := E \ d(u), and ν′ be the projection of ν onto
E′. Since any spanning tree has exactly n−1 edges in G,
the distribution of Z under ν conditioned on Y = k is the
same as the distribution of Z under ν′n−1−k (recall that
since Xe = 0 under ν, d(v) ⊆ E′). Therefore, it is sufficient
to prove that Pν′n−3

[Z = 2] is a constant. Moreover, since
ν is a strongly Rayleigh measure, and these measures are
closed under projection and truncation, ν′n−3 is strongly
Rayleigh. Hence, ν′n−3 satisfies negative association and
therefore Z is highly concentrated around its expected
value. Thus, it is sufficient to show that Eν′n−3

[Z] is
strictly above 1 and below 3.

First, we show Eν′n−2
[Z] ≤ 3, then we use stochastic

domination to prove the lemma. Let A := {Y ≤ 1}. Since
A is a decreasing event, and for any edge f ∈ E′, Xf is an
increasing function, by the negative association property
P

[
Xf |A

]
≥ P

[
Xf

]
. Since conditioning on A implies Y =

1 and XE′ +Y = n− 1, we have Eν [XE′ |A] = Eν [XE′ ]+ 1;
thus

Eν′n−2
[Z] = Eν [Z|A] ≤ Eν [Z] + 1 = 3.

Therefore, by the stochastic domination, we obtain

1 ≤ Eν′≤n−4
[Z] ≤ Eν′n−3

[Z] ≤ Eν′n−2
[Z] ≤ 3, (1)

where Eν′≤n−4
[Z] is the measure ν′ conditioned on XE′ ≤

n − 4, and the first inequality simply follows by the
connectivity property of spanning trees (i.e., we always
have Z ≥ 1).

On the other hand, since Eν [Z] � 2 we have

Pν [Y = 1]Eν′n−2
[Z] + Pν [Y = 2]Eν′n−3

[Z]
+ Pν [Y ≥ 3]Eν′≤n−4

[Z] � 2.

But if Eν′n−3
[Z] is very close to 1 (or 3), then we must

have Pν [Y = 1] ≥ 1
2 (resp. Pν [Y ≥ 3] ≥ 1

2 ). This is
in contradiction with the expected value of Y being
equal to 2. In other words, since Eν [Y] � 2, a simple
application of Chernoff-Hoeffding bounds implies that
Pν [Y = 1] and Pν [Y ≥ 3] are strictly less than 1

2 . There-
fore, Pν′n−3

[Z] = Pν [Z = 2|Y = 2] is a constant, and e is
even with a constant probability. �
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